СВОЙСТВА БАЗАЛЬТОВЫХ РАСПЛАВОВ

Этап 2

1. Подготовка пробы базальтовой шихты к исследованиям

Для испытаний базальтовой породы первоначально полученную шихту тщательно перемешивали. Затем отбирали точечные пробы, из которых путем объединения их получали среднюю пробу. Точечные пробы отбирались из двух разных мест: с поверхности, а также из базальта, находящегося в нижней части.

2. Получение стекол

Химический состав средней пробы базальтовой породы был определен методом рентгенофлуоресцентного анализа. Рентгенофлуоресцентный анализ базальта проводился на приборе Axios Advanced фирмы PANanalytical. В качестве источника возбуждения характеристического излучения использовали рентгеновскую трубку с Rh-анодом мощностью до 4 кВт. Измерения проводили в вакууме около 3 Па. Для анализа перетертые образцы шихты прессовали в таблетки с полистиролом в соотношении 1:12. Общее количество железа представлено как Fe₂O₃. Погрешность определения химического состава ±0.1%.

Образец	SiO ₂	Al ₂ O ₃	TiO ₂	Fe ₂ O ₃	CaO	MgO	K2O	Na ₂ O
Базальт	44.4	15.3	2.3	10.4	10.4	10.9	2.0	4.3

Таблица 1. Химический состав измельченной базальтовой породы (в масс. %).

На основании химического состава представленной пробы базальта, был подобран следующий состав стекла, представленный в Таблице 2. Полученные пробы горной породы дробили, а затем измельчали на шаровой мельнице до состояния мелкодисперсного порошка. Модифицированный вариант базальтового стекла получали добавлением к шихте **35 масс. %** доломита (CaCO₃•MgCO₃).

Таблица 2. Химический состав базальтового стекла с модифицированным химическим составом (в масс. %).

Тип стекла	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	CaO	MgO	K2O	Na ₂ O
Базальт	34.7	11.9	8.1	1.8	20.9	17.6	1.6	3.4

Рецепт шихты приведен в таблице 3.

Наименование сырьевого материала	Количество, г
Проба базальта	100
CaCO ₃ •MgCO ₃	54

Таблица 3. Рецепт шихты

Шихту нагревали в платиновом тигле в высокотемпературной печи по температурному режиму, представленному на рисунке 1. Медленный нагрев в температурном интервале 1000-1600°C необходим для предотвращения бурного выделения газов неразложившихся компонентов шихты.

Рис. 1. Температурный режим получения стекла с добавкой 35 масс. % доломита.

Тигель с расплавленной стекломассой извлекали из печи с помощью щипцов при температуре 1570-1590 °C. Закалку полученных стекол проводили путем быстрого выливания стекломассы в воду комнатной температуры. Полученное стекло исследуемого состава полностью проварилось при 1590 °C в течение 24 часов и не имело посторонних газовых включений.

3. Определение вязкости базальтового расплава с добавкой 35 масс. % доломита.

Определение вязкости базальтового расплава проводили на лабораторной установке (рисунок 2). В рамках эксперимента использовался метод определения вязкости расплава, основанный на измерении скорости течения через трубчатый канал круглого сечения известного диаметра при заданной температуре. В платиново-родиевый тигель (рисунок 3) с внутренним диаметром ~30 мм, с одной фильерой длиной 2 мм и диаметром ~2 мм, помещался предварительно взвешенный образец базальтового стекла (70 г). После чего тигель фиксировался в печи в вертикальном положении. Нагрев тигля производили со скоростью 300 °C/час до температуры 1100 °C в автоматическом режиме. Далее в ручном режиме до появления на фильере капли расплава и затем выдерживали при данной температуре до выравнивания в расплаве температурного поля.

- 3. Легковесная керамическая теплоизоляция
- 4. Керамическая изоляция 5. Керамическая подставка для многофильерного тигля 6. Pt нагревательный элемент

Рис. 2. Схема лабораторной установки для получения непрерывного волокна

Рис. 3. Платиново-родиевый тигель с одной фильерой Таблица

4. Параметры тигля.

Внешний диаметр тигля	35 мм
Диаметр фильеры (Отверстие №1)	2 мм
Длина фильеры	2 мм

В ходе эксперимента были определены температуры верхнего и нижнего предела получения волокна. Температура нижнего предела получения волокна (Тн.п.п.в.) – температура, при которой волокно диаметром до 20 мкм можно получать без обрыва в течение 30 минут, а температура верхнего предела получения волокна (Тв.п.п.в.) – температура вытекания базальтового расплава и затекания фильерного поля тигля. При данной температуре дальнейшее получение волокна невозможно.

Таблица 5. Условия получения волокон

Тип волокна	Тн.п.п.в., °С	Тв.п.п.в, °С	T, °C
Базальт	1450±10	1480±10	30±10

По результатам измерения массы вытекшей стекломассы при определенной температуре строится зависимость объема вытекшей стекломассы (V) от времени t. Полученная зависимость V(t) = Q является главным параметром, по которому в дальнейшем определяется вязкость расплава.

Вязкость расплава определялась из закона Пуазейля:

$$\eta = \frac{\pi R^4}{8Ql} \Delta p$$

где, *Дp*= *p*1-*p*2 - перепад давления на концах капилляра, Па;

- объёмный расход расплава, м³/с;
- радиус фильеры, м;
- длина фильеры, м.

На рисунке 4 представлена зависимость объема вытекшей стекломассы при температуре верхнего предела получения волокна (1480 °C) от времени, где по тангенсу угла наклона определяли объёмный расход расплава (Q).

Рис. 4. Зависимость изменения объема вытекшей стекломассы с добавкой 35 масс. % доломита от времени. (35.27%MgO+CaO)

Плотность полученных стекол определяли методом гидростатического взвешивания на весах Sartorius YDK 01 с комплектом YDK 01 LP (точность – 0,1 мг). В качестве иммерсионной жидкости использовали воду. Плотность стекла рассчитывали по следующей формуле:

$$\rho = \rho_{\mathfrak{K}} \frac{m_{\scriptscriptstyle B}}{m_{\scriptscriptstyle B} - m_{\scriptscriptstyle \mathcal{K}}},$$

где ρ – плотность стекла, г/см³; ρ_ж – плотность иммерсионной жидкости, г/см³; m_в – масса образца на воздухе, г; m_ж – масса образца в иммерсионной жидкости, г

Плотность полученных стекол составила - 2.71 г/см³. Вязкость базальтового расплава при температуре 1480 °C - 9.6 Па*с.

4. Термические свойства

Термический анализ базальтовой породы с добавлением 10, 20 и 35 масс. % доломита термоанализаторе STA Jupiter 449C проводили на синхронном фирмы NETZSCH c высокотемпературной печью (Трабоч = 20-1500°C). Для исследований использовался высокочувствительный держатель образцов с Pt/Pt-Rh термопарами. При анализе использовали платиновые тигли (рабочий тигель и тигель сравнения). В ходе анализа нагревание и охлаждение проводили со скоростью 10°С/мин от 20 до 1450°С. Масса навесок составила более 80 мг. Методическая погрешность определения температуры ±2°С.

На кривой ДСК показан ряд эндотермических эффектов при температурах, приблизительно 175°С которые связаны с удалением связанной воды (рисунок 5-6). На термогравиметрической кривой (ТГ-кривая) в интервале температур 600-800°С наблюдается резкое уменьшение массы. Данный эффект связан с разложением доломита. Выше температуры плавления образец находится в жидком состоянии, и температурная зависимость его теплоемкости отлична от кристаллического состояния. Поэтому после плавления изменяется наклон кривой ДСК. На представленных рисунках видно, что добавки доломита не приводят к изменению температуры плавления исходного базальта.

Рис. 5. Кривые нагревания ДСК (синие линии) и ТГ (черные линии) базальтовой породы с 10 масс. % доломита ((24.4%MgO+CaO)), полученные на воздухе со скоростью нагрева 10°/мин

Рис. 6. Кривые нагревания ДСК (синие линии) и ТГ (черные линии) базальтовой породы с 20 масс. % доломита (27.5%MgO+CaO), полученные на воздухе со скоростью нагрева 10°/мин

Рис. 7. Кривые охлаждения ДСК (синие линии) и ТГ (черные линии) базальтовой породы с 10 масс. % доломита, полученные на воздухе со скоростью охлаждения 10 °/мин

Рис. 8. Кривые охлаждения ДСК (синие линии) и ТГ (черные линии) базальтовой породы с 20 масс. % доломита, полученные на воздухе со скоростью охлаждения 10 °/мин

Рис. 9. Кривые нагревания ДСК (синие линии) и ТГ (черные линии) базальтовой породы с 35 масс.% доломита (32.14%(MgO+CaO)), полученные на воздухе со скоростью нагревания 10 °/мин

Рис. 10. Кривые охлаждения ДСК (синие линии) и ТГ (черные линии) базальтовой породы с 35 масс. % доломита, полученные на воздухе со скоростью охлаждения 10 °/мин

5. Фазовый состав образцов базальта с добавками доломита(CaMg(CO3)2)

		0 % 0	CaMg(CO ₃) ₂						
авгит	окерманит	периклаз	кристобалит	форстерит	кианит	Магнетит			
пр. гр. С2/ <i>с</i>	Ca2MgSi2O7	MgO,	пр. гр.	пр. гр.	пр. гр.	пр. гр.			
	пр. гр.	пр.гр.	P41212	Pnma	- D1	Fd3m			
	P-42₁m	Fm3m			PI				
a = 9.7447			a = 4.984	a = 10.213	a = 7.076	a = 8.397			
<i>b</i> = 8.8706				b = 5.979	b = 7.853				
<i>c</i> = 5.2976			c = 6.916	c = 4.755	<i>c</i> = 5.588				
α = 106.12					α = 90.12				
					β = 100.85				
					γ = 105.72				
64 %			2 %	11 %	13 %	11 %			
	•	10 % C	CaMg(CO ₃) ₂		L				
a = 9.7554				a = 10.224	a = 7.119	a = 8.359			
b = 8.8795				b = 5.992	b = 7.872				
<i>c</i> = 5.3040				c = 4.762	c = 5.548				
β = 106.116					α = 89.66				
					β = 100.75				
					γ = 105.97				
75 %				10 %	9 %	6 %			
		20 % 0	CaMg(CO ₃) ₂						
a = 9.7476	a = 7.770			a = 10.222	a = 7.077	a = 8.396			
b = 8.8736				b = 5.985	b = 7.881				
<i>c</i> = 5.2986	<i>c</i> = 5.044			c = 4.760	c = 5.548				
β = 106.051					α = 90.04				
					β = 100.94				
					γ = 105.71				
54 %	15 %			16 %	13 %	2 %			
	35 % CaMg(CO ₃) ₂								
a = 9.736	a = 7.7622	a = 4.2126		a = 10.230	a = 7.03				
<i>b</i> = 8.870				b = 6.003	b = 7.827				
<i>c</i> = 5.2944	<i>c</i> = 5.0216			c = 4.773	<i>c</i> = 5.593				
β = 106.026					α = 89.59				
					β = 101.38				
					γ = 107.24				
31 %	34 %	9 %		4 %	21 %				

Таблица 6. Фазовый состав образцов базальта, отожженных притемпературе 1200 °С в течение 1 часа, с разным количеством доломита (CaMg(CO₃)₂)

Рис. 11. Рентгенограммы образцов исходного базальта, смешанных с разным количеством доломита (CaMg(CO₃)₂) (0%, 10%, 20% и 35 %) и отожженных при температуре 1200 °C в течение 1 ч. Вертикальные линии показывают положения рефлексов для:

- 1. Авгита (Augite, (Mg,Ca,Fe)₂(SiO₃)₂) (красные),
- 2. Форстерита (Forsterite, Mg₂SiO₄) (зеленые),
- 3. Кианита (Kyanite, Al₂(SiO₄)O) (фиолетовые),
- 4. Кристобалита (Cristobalite low, SiO₂) (голубые),
- 5. Окерманита (Akermanite, Ca₂MgSi₂O₇) (синие).

Рис. 12. Рентгенограмма образца исходного базальта с 10% доломита (CaMg(CO₃)₂), отожженного при температуре 1200 °C в течение 1 ч. и результаты проведения количественного фазового анализа методом Риетвельда. Показаны экспериментальная (черная), вычисленная (красная) и разностная (внизу) рентгенограммы. Вертикальные линии показывают положения рефлексов для:

- 1. Авгита (*Augite*, (Mg,Ca,Fe)₂(SiO₃)₂) (красные),
- 2. Форстерита (Forsterite, Mg₂SiO₄) (зеленые),
- 3. Кианита (*Kyanite*, Al₂(SiO₄)O) (фиолетовые),
- 4. Магнетита (*Magnetite*, Fe₃O₄) (синие).

Рис. 13. Рентгенограмма образца исходного базальта с 20% доломита (CaMg(CO₃)₂), отожженного при температуре 1200 °C в течение 1 ч. и результаты проведения количественного фазового анализа методом Риетвельда. Показаны экспериментальная (черная), вычисленная (красная) и разностная (внизу) рентгенограммы. Вертикальные линии показывают положения рефлексов для:

- 1. Авгита (Augite, (Mg,Ca,Fe)₂(SiO₃)₂) (красные),
- 2. Форстерита (Forsterite, Mg₂SiO₄) (зеленые),
- 3. Кианита (Kyanite, Al₂(SiO₄)O) (фиолетовые),
- 4. Окерманита (Akermanite, Ca₂MgSi₂O₇) (голубые),
- 5. Магнетита (Magnetite, Fe₃O₄) (синие),

Рис. 14. Рентгенограмма образца исходного базальта с 35% доломита (CaMg(CO₃)₂), отожженного при температуре 1200 °C в течение 1 ч. и результаты проведения количественного фазового анализа методом Риетвельда. Показаны экспериментальная (черная), вычисленная (красная) и разностная (внизу) рентгенограммы. Вертикальные линии показывают положения рефлексов для:

- 1. Авгита (*Augite*, (Mg,Ca,Fe)₂(SiO₃)₂) (красные),
- 2. Форстерита (Forsterite, Mg_2SiO_4) (зеленые),
- 3. Кианита (*Kyanite*, Al₂(SiO₄)O) (фиолетовые),
- 4. Окерманита (Akermanite, Ca₂MgSi₂O₇) (голубые),
- 5. Периклаз (Periclase, MgO) (фиолетовые).

Таблица 7. Фазовый состав образцов базальта, отожженных при температуре 1300°С в течение 1 ч. с разным количеством доломита (CaMg(CO₃)₂)

		0 % C	CaMg(CO ₃) ₂					
авгит	окерманит	периклаз	форстерит	кианит	магнетит	гематит		
пр. гр. C2/c	Ca2MgSi2O7	MgO,	Mg2SiO4	пр. гр.	Fe ₃ O ₄	Fe ₂ O ₃		
	пр. гр.	пр.гр.	пр. гр. <i>Рпта</i>	-	пр. гр.			
	P-42₁m	Fm3m		P1	Fd3m			
					a = 8.323	a = 5.074		
						c = 14.34		
					95 %	5 %		
		10 % Ca	aMg(CO ₃) ₂		L	L		
авгит	окерманит	периклаз	форстерит	Кианит	Рингвудит	корунд		
пр. гр. С2/с	Ca2MgSi2O7	MgO,	пр. гр. <i>Рпта</i>	пр. гр.	Fe ₂ SiO ₄	Al ₂ O ₃		
	пр. гр.	пр.гр.		-	пр. гр.	пр. гр.		
	P-42₁m	Fm3m		P^{\uparrow}	Fd3m	R3c		
a = 9.762			a = 10.226	a = 7.093		a = 4.763		
<i>b</i> = 8.844			b = 5.999	b = 7.847				
<i>c</i> = 5.323			c = 4.762	c = 5.539		<i>c</i> = 12.996		
β = 106.36				α = 89.73				
				β = 100.95				
				γ = 106.11				
28 %			27 %	33 %		12 %		
		20 % C	aMg(CO ₃) ₂		1	1		
a = 9.780		a = 4.174	a = 10.238		a = 8.284			
b = 8.868			b = 5.998					
<i>c</i> = 5.320			c = 4.758					
β = 106.27								
48 %		7 %	34 %		11 %			
35 % CaMg(CO ₃) ₂								
	a = 7.7930		a = 10.256		a = 8.233			
			b = 6.0075					
	<i>c</i> = 5.0281		c = 4.7590					
	66 %		20 %		14 %			

Рис. 15. Рентгенограммы образцов исходного базальта, смешанных с разным количеством доломита (CaMg(CO₃)₂) (0%, 10%, 20% и 35 %) и отожженных при температуре 1300 °C в течение 1 ч. Вертикальные линии показывают положения рефлексов для:

- 1. Авгита (*Augite*, (Mg,Ca,Fe)₂(SiO₃)₂) (красные),
- 2. Форстерита (Forsterite, Mg₂SiO₄) (зеленые),
- 3. Кианита (*Kyanite*, Al₂(SiO₄)O) (фиолетовые),
- 4. Магнетита (*Magnetite*, Fe₃O₄) или Рингвудита (*Ringwoodite*, Fe₂SiO₄)

(голубые),

- 5. Окерманита (Akermanite, Ca₂MgSi₂O₇) (синие).
- 6. Периклаз (*Periclase*, MgO) (коричневые).

Рис. 16. Рентгенограмма образца исходного базальта с 10% доломита (CaMg(CO₃)₂), отожженного при температуре 1300°C в течение 1 ч. и результаты проведения количественного фазового анализа методом Риетвельда. Показаны экспериментальная (черная), вычисленная (красная) и разностная (внизу) рентгенограммы. Вертикальные линии показывают положения рефлексов для:

- 1. Авгита (Augite, (Mg,Ca,Fe)₂(SiO₃)₂) (красные),
- 2. Форстерита (Forsterite, Mg₂SiO₄) (зеленые),
- 3. Кианита (*Kyanite*, Al₂(SiO₄)O) (фиолетовые),
- 4. Корунда (*Corundum*, Al₂O₃) (синие).

Рис. 17. Рентгенограмма образца исходного базальта с 20% доломита (CaMg(CO₃)₂), отожженного при температуре 1300 °C в течение 1 ч. и результаты проведения количественного фазового анализа методом Риетвельда. Показаны экспериментальная (черная), вычисленная (красная) и разностная (внизу) рентгенограммы. Вертикальные линии показывают положения рефлексов для:

- 1. Авгита (*Augite*, (Mg,Ca,Fe)₂(SiO₃)₂) (красные),
- 2. Форстерита (Forsterite, Mg₂SiO₄) (зеленые),
- 3. Периклаза (Periclase, MgO) (фиолетовые),
- 4. Рингвудита (*Ringwoodite*, Fe₂SiO₄) (синие).

Рис. 18. Рентгенограмма образца исходного базальта с 35% доломита (CaMg(CO₃)₂), отожженного при температуре 1300 °C в течение 1 ч. и результаты проведения количественного фазового анализа методом Риетвельда. Показаны экспериментальная (черная), вычисленная (красная) и разностная (внизу) рентгенограммы. Вертикальные линии показывают положения рефлексов для:

- 1. Окерманита (Akermanite, Ca₂MgSi₂O₇) (красные),
- 2. Форстерита (Forsterite, Mg₂SiO₄) (зеленые),
- 3. Рингвудита (*Ringwoodite*, Fe₂SiO₄) (синие).